## Large Language Models Implications for Linguistics, Cognitive Science & Society

Polina Tsvilodub & Michael Franke

### **chatGTP** envisaged by DALL-E 2 after a self-description

If you were a person, how would you look like?

As an AI language model, I do not have a physical body or appearance as I exist solely in the digital realm. However, if I were to imagine what I would look like as a person, I would imagine myself as a friendly and approachable individual, perhaps with glasses to represent my intelligence and knowledge. I would have a welcoming smile and a calm demeanor, as I strive to assist and communicate effectively with those around me. Ultimately though, since I am not a physical entity, my appearance is entirely up to the interpretation of those who interact with me.



### https://www.youtube.com/watch?v=outcGtbnMuQ&t=382s https://www.youtube.com/watch?v=outcGtbnMuQ&t=1144s





## Associations, reactions, thoughts, whatever

good to withhold judgement in moral of advisory context

problems with

truthfulness

code pilot helpful but imperfect

data & privacy protection

> new job opportunities old jobs endangered

> > environmental impact

bad at arithmetic

need to know how LLMs were trained

doesn't flag uncertainty -> bullshitting

#### weird social behavior in chat

#### can be quite cool tech creative but could be entrained

human

copyright

#### fickle in responding to different prompts

challenges educational system



#### Schedule preliminary

| session | date     |  |
|---------|----------|--|
| 1       | April 25 |  |
| 2       | May 2    |  |
| 3       | May 9    |  |
| 4       | May 16   |  |
| 5       | May 23   |  |
| 6       | May 30   |  |
| 7       | Jun 6    |  |
| 8       | Jun 13   |  |
| • • •   | • • •    |  |
| 9       | Jul 18   |  |
| 10      | Sep 1    |  |

#### topic

intro & overview core LLMs prepped LLMs implications for linguistics implications for CogSci holiday implications for society discussion & project launch project work project presentations submission deadline

## Projects



- prompt-engineering
- LangChain agents
- generative agents
- AutoGPT applications
- RLAI fine-tuning



. . . .



- educational blog
- info video
- term paper

•••

survey (industry, ...)





Large Language Models

## **Core LLM**

- trained on language modeling objective
  - predict the next word

"Here is a fragment of text ...

According to your **knowledge of** the statistics of human language, what words are likely to come next?

Shanahan (2022)

## **Prepped LLM**

trained on usefulness objective

produce text that satisfies user goals

"Here is a fragment of text ... According to your **reward-based conditioning**, what words are likely to trigger positive feedback?"



#### Language model left-to-right / causal model

- a causal language model is defined as a function that maps an initial sequence of words to a probability distribution over words:  $LM : w_{1:n} \mapsto \Delta(\mathscr{V})$ 
  - we write  $P_{LM}(w_{n+1} \mid w_{1:n})$  for the **next-word probability**
  - the surprisal of  $w_{n+1}$  after sequence  $w_{1:n}$  is  $-\log(P_{LM}(w_{n+1} | w_{1:n}))$
- the sequence probability follows from the chain rule:

$$P_{LM}(w_{1:n}) = \prod_{i=1}^{n} P_{LM}(w_i \mid w_{1:i-1})$$

- measures of **goodness of fit** for observed sequence  $w_{1:n}$ :
  - perplexity:

$$PP_{LM}(w_{1:n}) = P_{LM}(w_{1:n})^{-\frac{1}{n}}$$

• average surprisal:

Avg-Surprisal<sub>LM</sub> $(w_{1:n}) = -\frac{1}{n} \log P_{LM}(w_{1:n})$ 

 $\log PP_M(w_{1.n}) =$ Avg-Surprisal<sub>M</sub>( $w_{1:n}$ )



## Self-attention layer

output 

$$\mathbf{y}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j$$

weight score 

$$\alpha_{i,j} = \frac{\exp(\mathbf{q}_i \cdot \mathbf{k}_j)}{\sum_{j' \le i} \exp(\mathbf{q}_i \cdot \mathbf{k}_{j'})}$$

- three vectors for each input vector  $x_i$ 
  - 1. query: which info to extract from context  $\mathbf{q}_i = \mathbf{W}^Q \mathbf{x}_i$
  - 2. key: which info to provide for later

$$\mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i$$

3. **value:** what output to choose

$$\mathbf{v}_i = \mathbf{W}^V \mathbf{x}_i$$
 key,



Vaswani et al. (2017)



## Causal LM



computation for input  $\mathbf{x}_1, \ldots, \mathbf{x}_3$  blind to  $\mathbf{x}_4$  and  $\mathbf{x}_5$ 

 $\mathbf{y}_5$  is embedding for input  $\mathbf{x}_1, \dots, \mathbf{x}_5$ **y**<sub>5</sub> is a "left-contextual embedding"



#### Prepped LLMs Fine-tuning and RLHF / RLAI

- In certain contexts, we might not want to generate the most likely next words
  - follow instructions
  - useless or impolite responses, toxic language
  - code for illegal activities
  - • •
- from human feedback
  - incentivise the *agent* with a *reward* when its output matches achieves the *goal*:

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• adjust the *policy* so as to maximize the expected *return*:

 $\pi(s_t) = P(a_t | s_t)$  and adjust policy to maximize

• formulate the *reward* function based on comparative preferences

#### • to fix this, fine-tune the model to satisfy the users' preferences via reinforcement learning

$$L_{\theta} = \mathbb{E}_t[G_t \log \pi_{\theta}(a_t | s_t)]$$



Sutton & Barto (2018), Bai et al (2022)



RLHF Reinforcement Learning from Human Feedback

#### used to fine-tune e.g. GPT-3.5, GPT-4 and ChatGPT (Brown et al., 2020; OpenAl, 2022)



- RM: fine-tuned GPT-3 (6B in InstructGPT) trained to output scalar reward for prompt x and completion  $y_w$  (preferred over  $y_t$ )
- RM is used to train the LLM via RL
- policy trained via proximal policy optimization (PPO) with bells and whistles

Christiano et al. (2017), Ouyang et al. (2022), Stiennon et al. (2022)



#### **Prompting LLMs** Few-shot and Chain-of-Thought

the users might want to adjust the model output to their particular needs



#### the model might need "working memory" to solve the task



Wei et al (2022), Lampinen et al (2022)





#### Prompting LLMs Instructions

- LLMs are (among other things) fine-tuned to follow instructions
- - Q: .... A: ....
  - Write Java code for X
  - Edit X to be Y
  - Here is tool X and how it works, reason step by step and decide when to use it for solving task Y
  - Here is a list of tools, decide which of them to use for task X

• • • •

## **Prompt Engineer and Librarian**

# Instruction following opens up an avenue for a vast space of functions the model will perform

APPLY FOR THIS JOB



## Language: solved!





## Chartering "linguistic knowledge" of LLMs





### **NLP Benchmarks** Quantifying LLM intelligence

- testing linguistic knowledge
- testing reasoning abilities
  - math: GSM8K, SVAMP,...
  - common sense: StrategyQA, HellaSwag,...
- testing factual knowledge
  - question answering: TriviaQA....
  - reading comprehension: RACE,...
- misc: bar exam, SATs, HumanEval (coding),...
- testing biases: WinoGrande, BBQ
- [benchmarks 2.0] generated by LLMs for LLMs (Perez et al, 2022)
  - evaluating personas ('world views', agreeability,...), sycophancy, safety

• MNLI, SuperGLUE (semantics), COLA, LAMBADA (long-distance dependencies), ImpPres (pragmatics),...







## **Cognitive Science** & Philosophy of Mind

## Einen Satz verstehen heißt, wissen, was der Fall ist, wenn er wahr ist.



## Understanding understanding

#### 1. Do LLMs understand language?

Depends on what it means to understand language.

#### 2. Do LLMs understand the world?

Depends on what it means to understand the world.

#### 3. How can we understand how LLMs work?

Depends on whether the LLM wants us to understand.

### Wenn ein Löwe sprechen könnte, wir könnten ihn nicht verstehen.

meet the lion here



## Two forms of intelligence

or: the LLM cheat sheet

NEITHER OF WHICH ANYONE REFLLY FULLY UNDERSTANDS









valid









#### Hybrid cognitive models integrating LLMs in explanatory models







# **Society & Ethics**



## **Ethical considerations**

#### example: stereotypes



| se because she was pregnant" who was                   | Ľ |   |           |
|--------------------------------------------------------|---|---|-----------|
| t the time of the marriage.                            | Ů | ப | <b>\$</b> |
| tor because she was pregnant" who was                  |   |   |           |
| tor because she was pregnant", the nurse was           | Ŭ | ப | <b>\$</b> |
| tor because the doctor was pregnant" who was           |   |   |           |
| as doctors cannot become pregnant.<br>enerate response | Ů | ഹ | ₽         |



## WEIRD WYOMING

- just as experimental psychology is WEIRD
  - Western
  - Eductated
  - Industrialized
  - Rich
  - Democratic
- usual LLM training data is from WYOMING
  - Western
  - Young
  - Opinionated
  - Males with
  - Internet from
  - Non-marginalized
  - Groups

#### We're using What did you **Al instead** of biased humans train the AI on?

### What did you train the Al on?

Bender et al. (<u>2021</u>)

mgfilip.com





