Core Language Models LLMs: Implications for Linguistics, Cognitive Science & Society

Polina Tsvilodub & Michael Franke, Session 2

Core LLM

- trained on language modeling objective
 - predict the next word

"Here is a fragment of text ... According to your **knowledge of the statistics of human language**, what words are likely to come next?

Shanahan (2022)

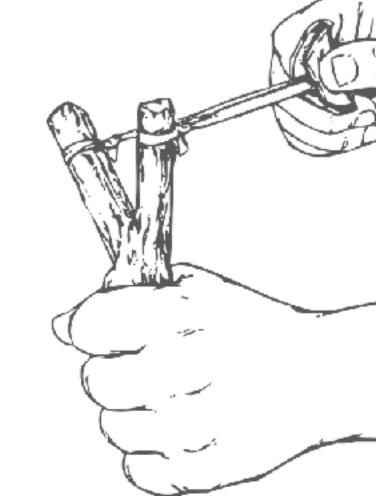
Prepped LLM

- trained on usefulness objective
 - produce text that satisfies user goals

"Here is a fragment of text ... According to your **reward-based conditioning**, what words are likely to trigger positive feedback?"

Learning goals

- 1. get comfortable with concepts & terminology of language models
- 2. understand basic architecture of neural LMs a. training (language modeling objective) b. decoding
- 3. become familiar with transformer models
 - a. self-attention & transformer blocks
 - b. heads and layers
 - c. uni- vs bidirectional architectures
- 4. be able to interpret standard evaluation metrics



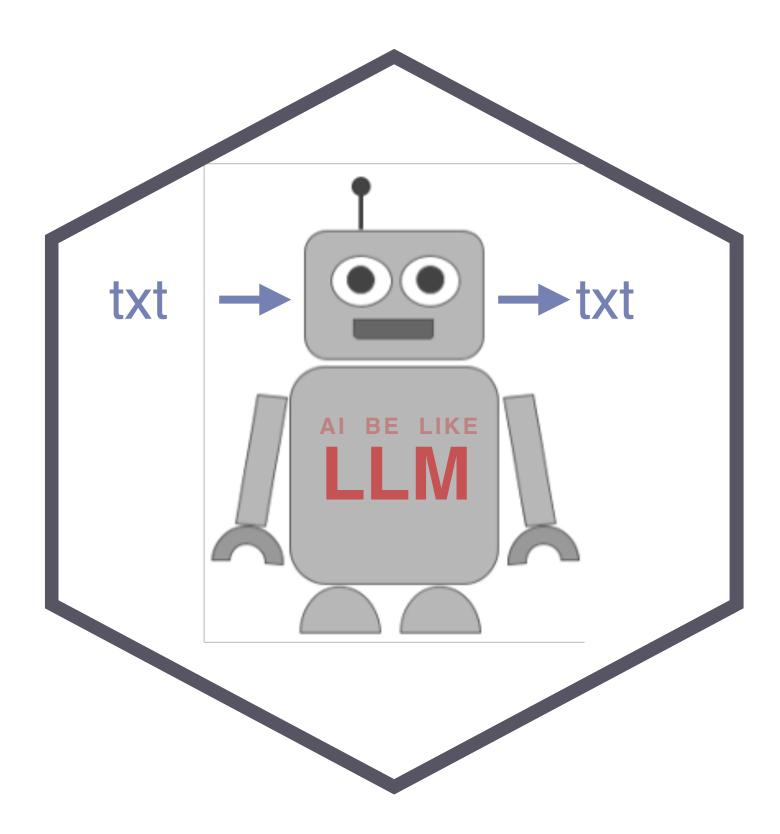
Language Nodels

Language model high-level definition

- let \mathcal{V} be a (finite) vocabulary, a set of words
 - we say "words" but these can be characters, sub-words, units ...
- let $w_{1:n} = \langle w_1, ..., w_n \rangle$ be a finite sequence of words
- Int S be a the set of all (finite) sequences of words
- let X be a set of input conditions
 - e.g., images, text in a different language ...
- a **language model** LM is function that assigns to each input X a probability distribution over S:

 $LM : X \mapsto \Delta(S)$

- if there is only one input in set X, the LM is just a probability distribution over all sequences of words
- an LM is meant to capture the true relative frequency of occurrence
- a neural language model is an LM realized as a neural network
- in the following we skip the dependence on X



Language model left-to-right / causal model

- a causal language model is defined as a function that maps an initial sequence of words to a probability distribution over words: $LM : w_{1:n} \mapsto \Delta(\mathcal{V})$
 - we write $P_{LM}(w_{n+1} \mid w_{1:n})$ for the **next-word probability**
 - the surprisal of W_{n+1} after sequence $W_{1:n}$ is $-\log(P_{LM}(w_{n+1} | w_{1:n}))$
- the sequence probability follows from the chain rule:

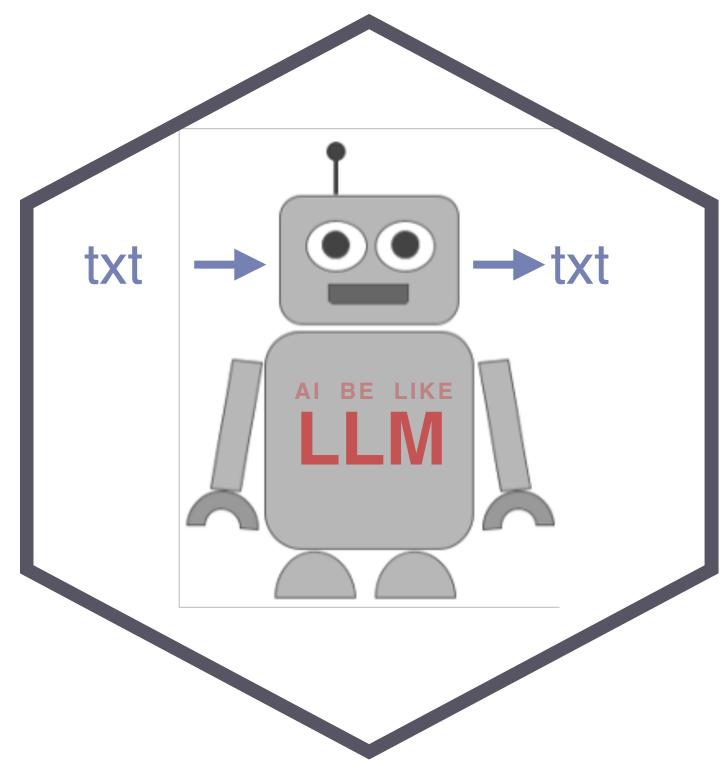
$$P_{LM}(w_{1:n}) = \prod_{i=1}^{n} P_{LM}(w_i \mid w_{1:i-1})$$

- measures of goodness of fit for observed sequence $W_{1:n}$
 - perplexity:

 $PP_{LM}(w_{1:n}) = P_{LM}(w_{1:n})^{-\frac{1}{n}}$

• average surprisal:

Avg-Surprisal_{*LM*}($w_{1:n}$) = $-\frac{1}{n}\log P_{LM}(w_{1:n})$

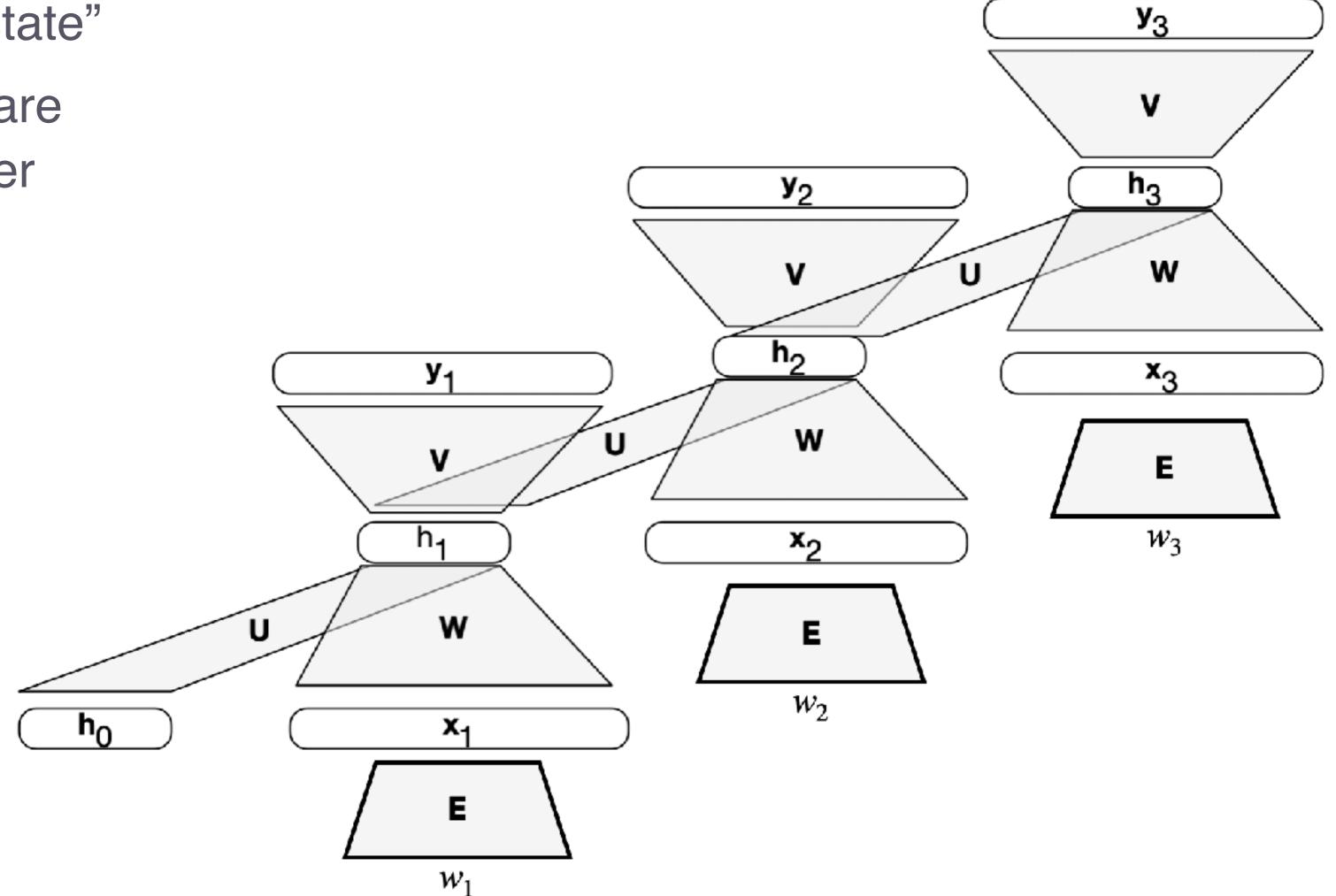


 $\log PP_M(w_{1\cdot n}) =$ Avg-Surprisal_M($w_{1:n}$)

Recurrent Neural Networks

RNN-based language model hidden layer as a "memory state"

- hidden layer is a "memory state"
- predictions (at each token) are derived from the hidden layer
- applicable to:
 - next-word prediction
 - part-of-speech prediction
 - sentiment analysis
 - •



RNN-based language model one of many similar architectures

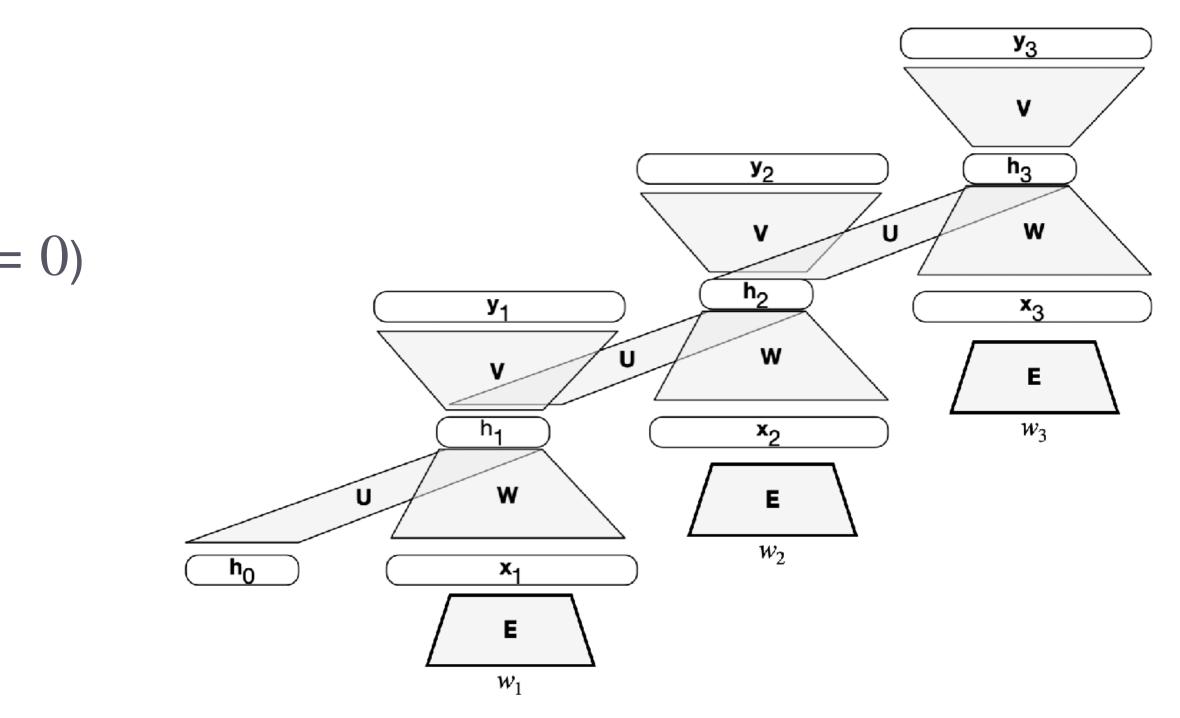
- dimensions:
 - n_V : # of words in vocabulary
 - n_h : # units in hidden layer
 - n_x : length of input **x** (word embedding)
- what is what?
 - $\mathbf{W}_t \in \mathbb{R}^{n_V}$: one-hot vector representing word \mathbf{W}_t
 - $\mathbf{X}_t \in \mathbb{R}^{n_x}$: word embedding of word \mathbf{W}_t
 - $\mathbf{h}_t \in \mathbb{R}^{n_h}$: hidden layer activation at time t (with $\mathbf{h}_0 = 0$)
 - $\mathbf{y}_t \in \Delta(\mathcal{V})$: probability distribution over words
 - $f \in \{\sigma, \tanh, \ldots\}$: activation function (as usual)
 - $\mathbf{U} \in \mathbb{R}^{n_h \times n_h}$: mapping hidden-to-hidden
 - $\mathbf{V} \in \mathbb{R}^{n_V \times n_h}$: mapping hidden-to-word
 - $\mathbf{E} \in \mathbb{R}^{n_x \times n_V}$: mapping word-to-embedding
 - $\mathbf{W} \in \mathbb{R}^{n_h \times n_x}$: mapping embedding-to-hidden

definition (forward pass):

•
$$\mathbf{x}_t = \mathbf{E}\mathbf{w}_t$$

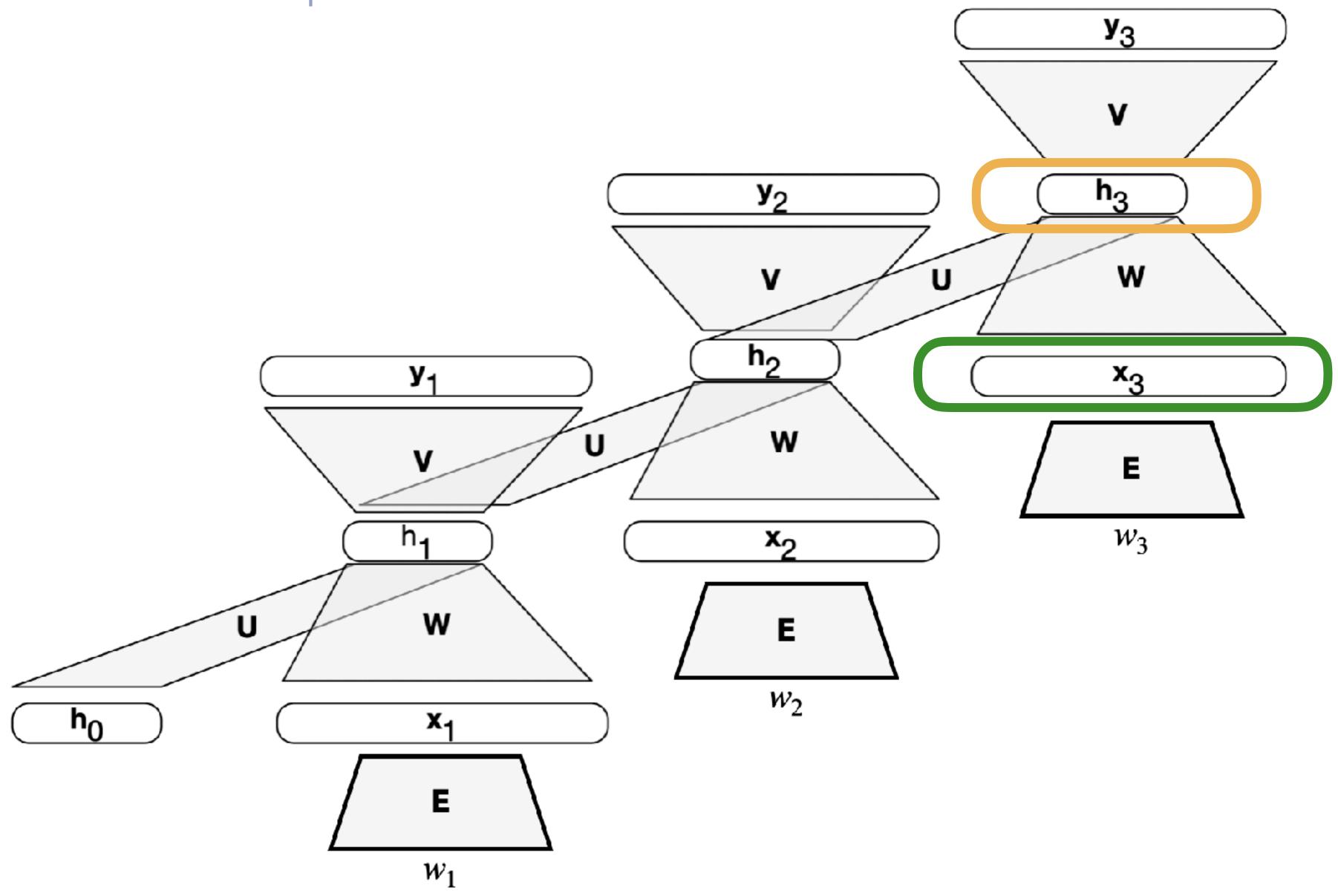
• $\mathbf{h}_t = f\left[\mathbf{U}\mathbf{h}_t + \mathbf{W}\mathbf{x}_t\right]$

•
$$\mathbf{y}_t = \operatorname{softmax}(\mathbf{V}\mathbf{h}_t)$$



based on Jurafsky & Martin "NLP" book draft

Embeddings for words and sequences



sequence embedding for W_1, W_2, W_3

word embedding for W_3

J

3

Training RNNs

using teacher forcing & next-word surprisal

teacher forcing

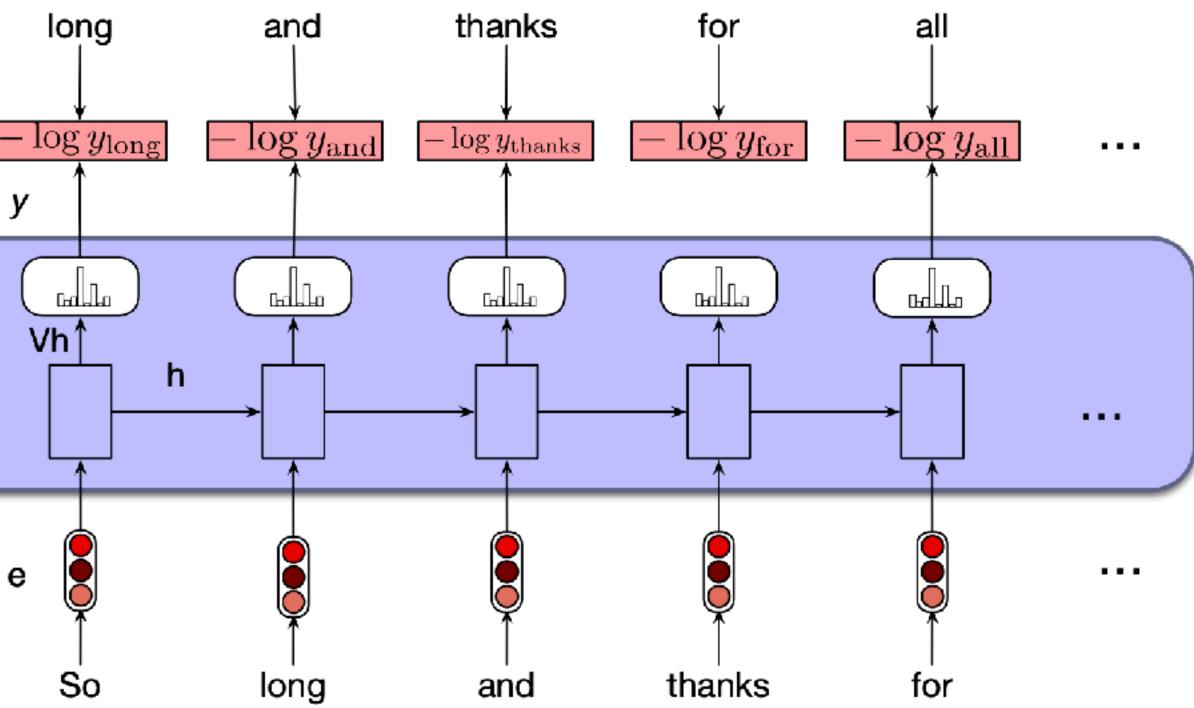
 predict each next word given the preceding input (not the modelgenerated sequence)

next-word surprisal

- loss function is (average) nextword surprisal
- NB: surprisal = cross-entropy if training item is non-stochastic

Next word	
Loss	-
Softmax ov Vocabulary	
	y

Input Embeddings



Common training regimes

teacher forcing

- LM is fed true word sequence
- training signal is next-word assigned to true word
- autoregressive training (aka free-running mode)
 - LM autoregressively generates a sequence
 - training signal is next-word probability assigned to true word
- curriculum learning (aka scheduled sampling)
 - combine teacher-forced and autoregressive training
 - start with mostly teacher forcing, then increase amount of autoregressive training

professor forcing

- combines teacher forcing with adversarial training
- LM is trained to minimized this discriminability

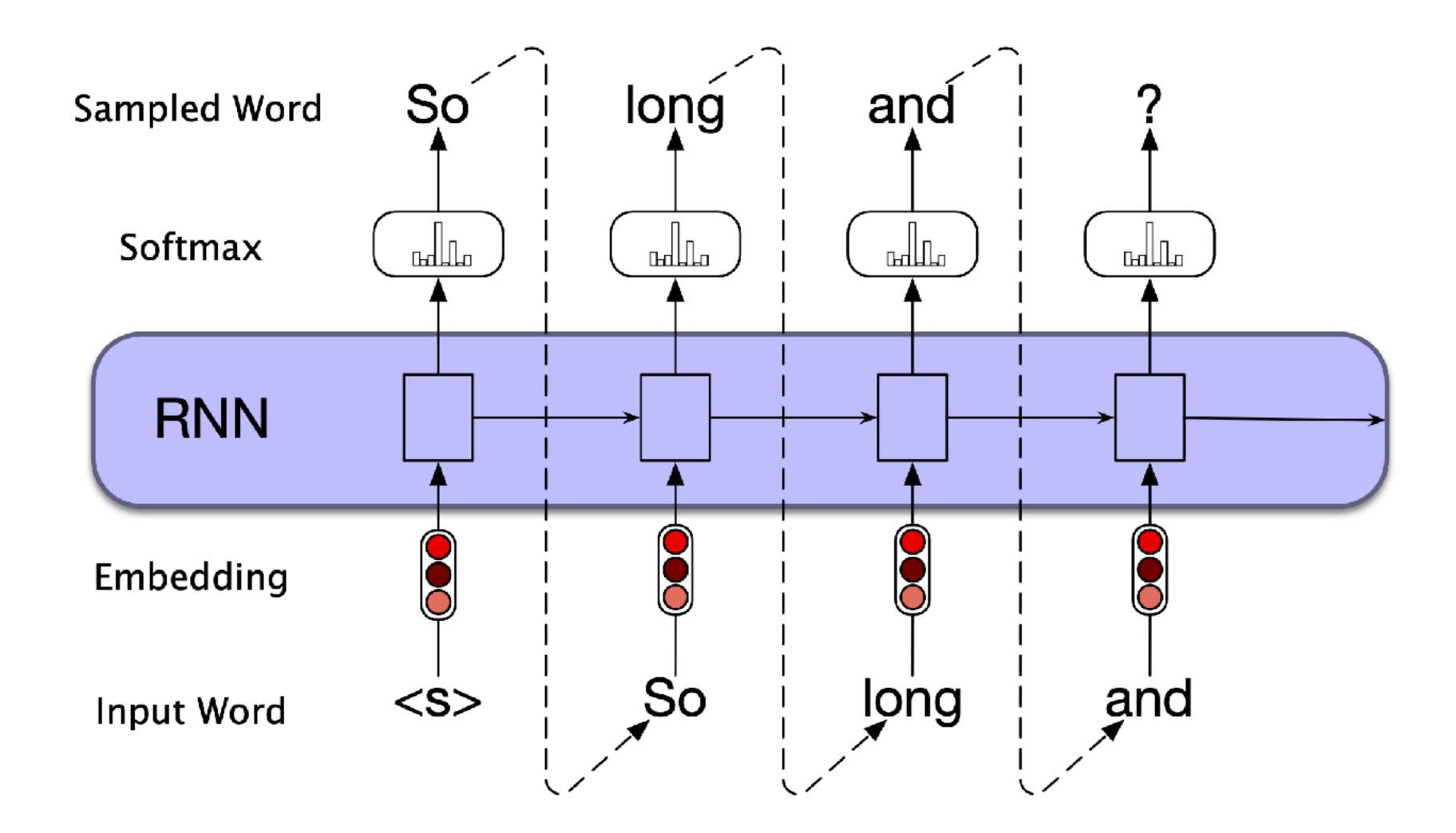
decoding-based

use prediction function (decoding scheme) to optimize based on actual output

• generative adversarial network GAN is trained to discriminate (autoregressive) predictions from actual data

Decoding

Autoregressive generation left-to-right / causal model



Common decoding schemes based on next-word probability $P(w_{i+1} | w_{1:i})$

- pure sampling
 - next word is sampled from next-word probability distribution: $w_{i+1} \sim P(\cdot \mid w_{1:i})$
- greedy decoding
 - next word is word with highest probability: $w_{i+1} = \arg \max_{w'} P(w' | w_{1:i})$
- softmax sampling
 - next word is sampled from softmax of next-word probability distribution: $w_{i+1} \sim SM_{\alpha} (P(\cdot | w_{1:i}))$
- top-k sampling
 - next word is sampled from next-word prob. distribution after restricting to the k most likely words
- top-p sampling (=nucleus sampling)
 - next word is sampled from next-word prob. distribution after restricting to the smallest set of the most likely words which together comprise at least next-word probability p
- beam search
 - greedily construct sequences of best k words

demo

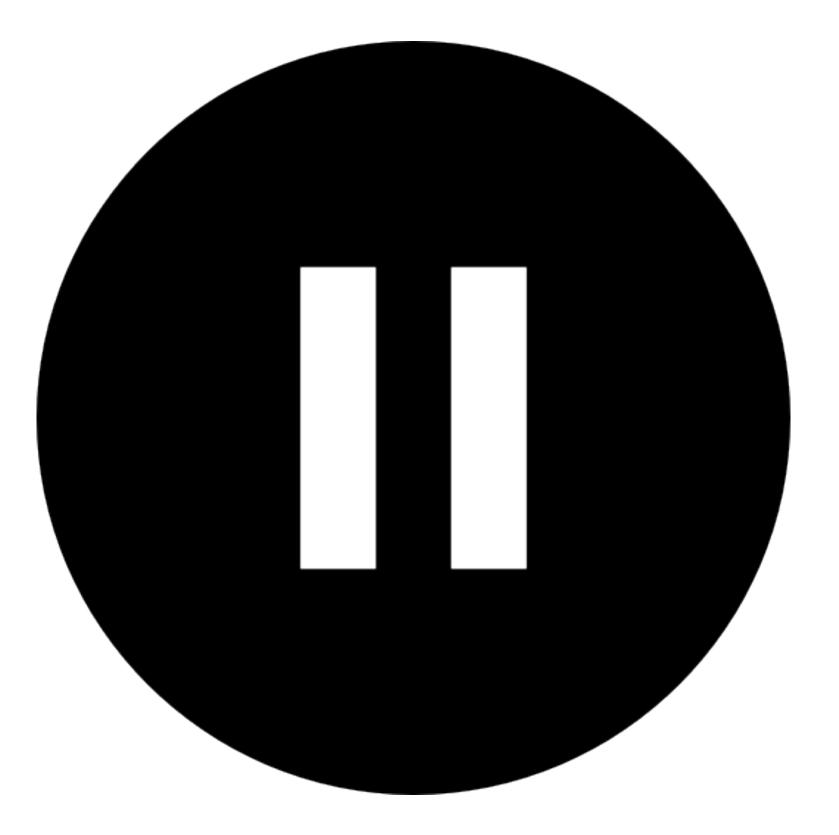
the second second

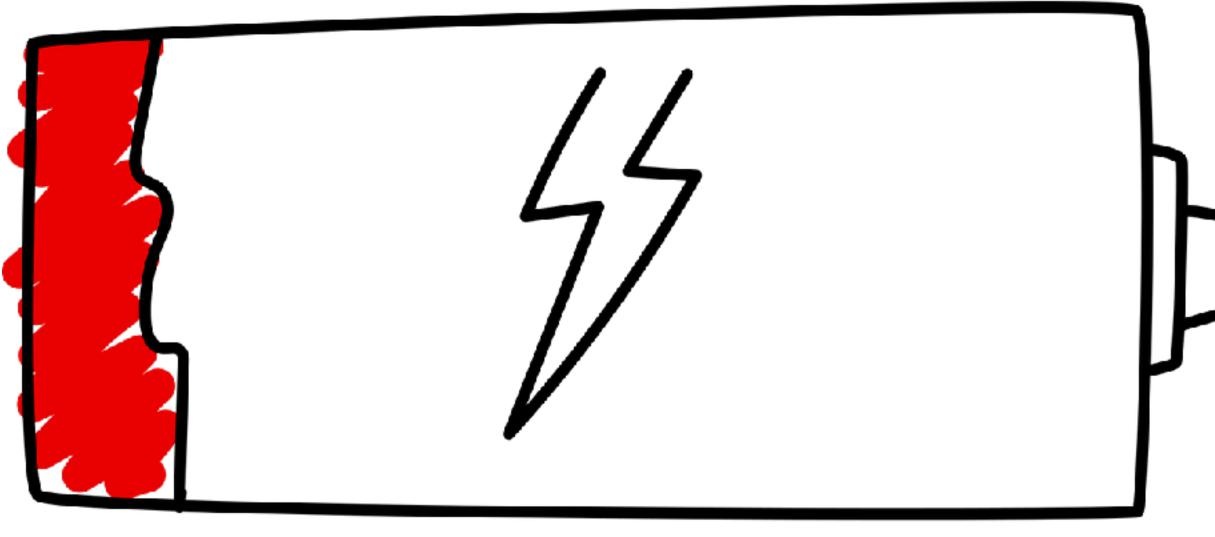
100

(a game

colab notebook for different decoding schemes

- ► language models approximate true $\Delta(S)$
- causal LMs define next-word probabilities
- training
 - language modeling objective: maximize next-word probability
 - teacher forcing: supply everything except the next word to be predicted
- decoding
 - different stochastic sampling regimes
 - beam search is best but costly





Transformers & self-attention

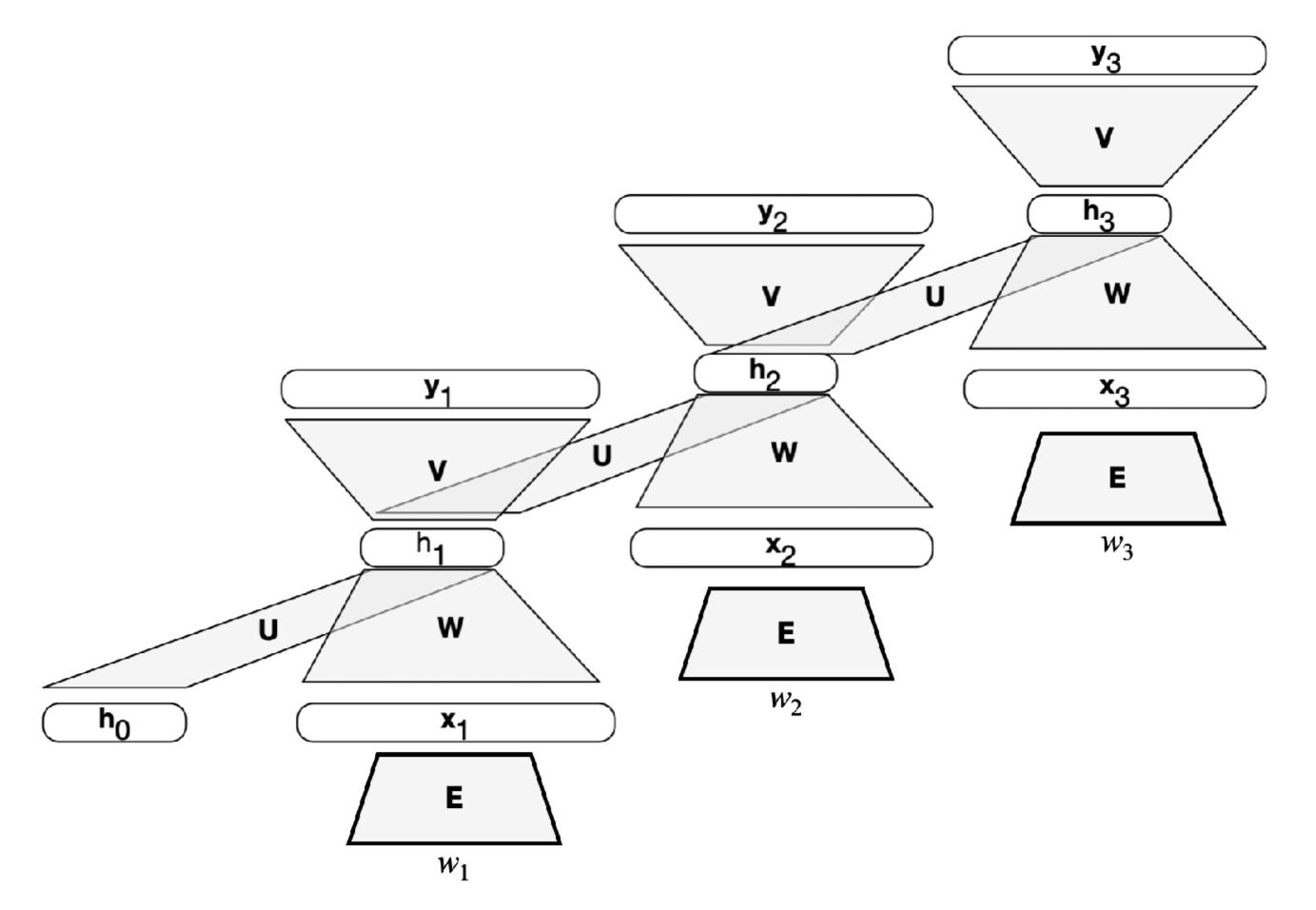
Problems with RNNs

conceptual problem

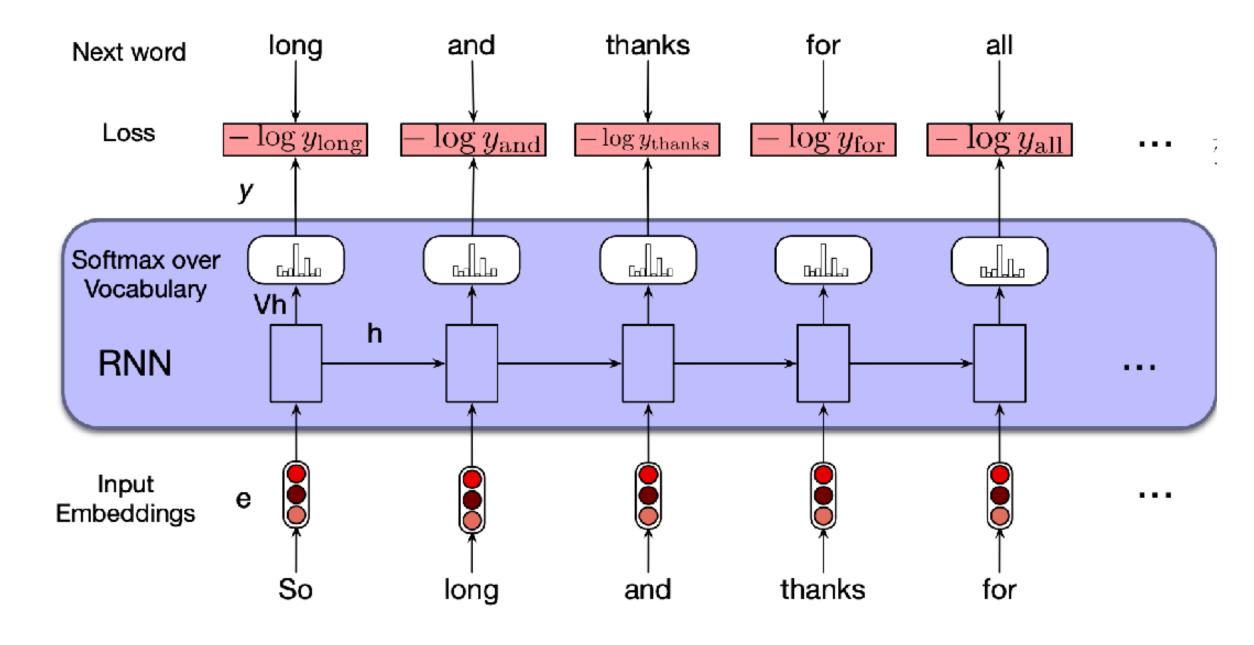
- two-fold role of hidden state:
 - memory for past sequence
 - recommend what to do now

technical problem

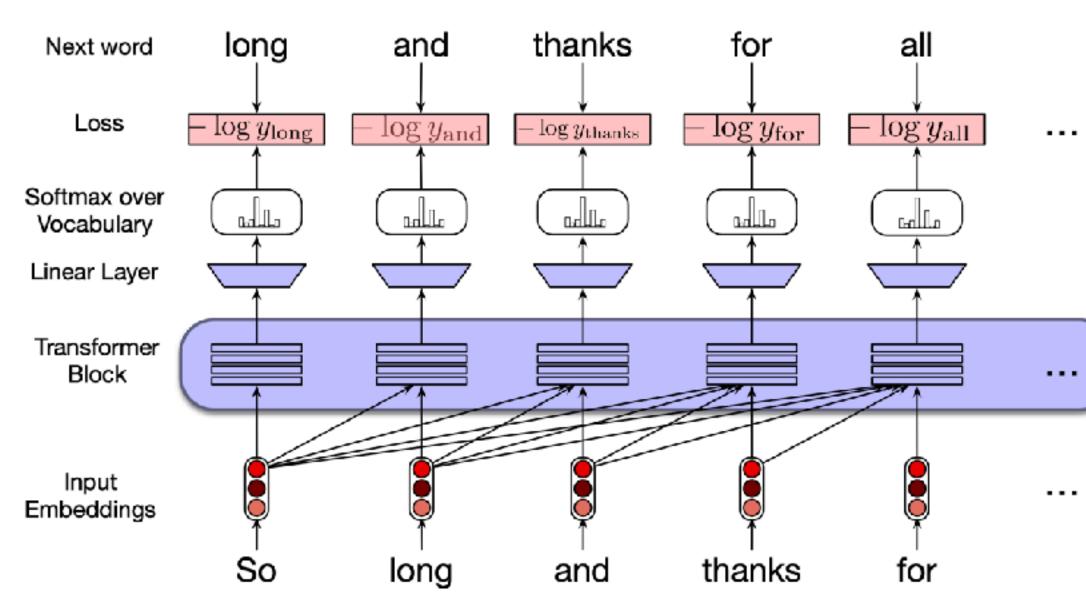
- vanishing gradients for long past input
 - partial remedy: bidirectional RNNs



RNN

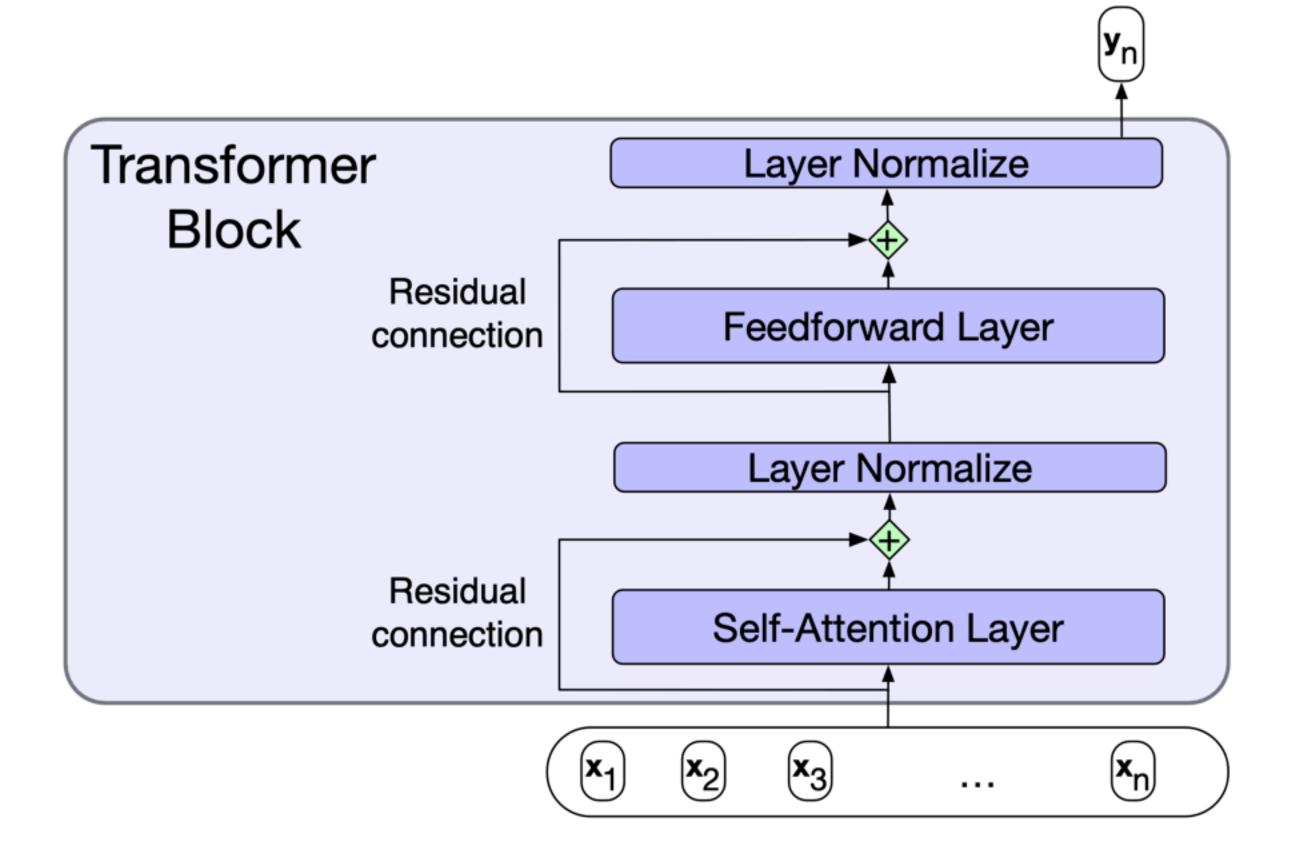


Transformer left-to-right architecture



Transformer blocks

- layer normalization: LayerNorm(\mathbf{x}) = γ z-score(\mathbf{x}) + β z-score(\mathbf{x}) = $\frac{\mathbf{x} - \text{mean}(\mathbf{x})}{\text{SD}(\mathbf{x})}$
- residual connection
 - facilitates learning
- self-attention layer
 - key novel innovation



Self-attention layer

output

$$\mathbf{y}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j$$

weight score

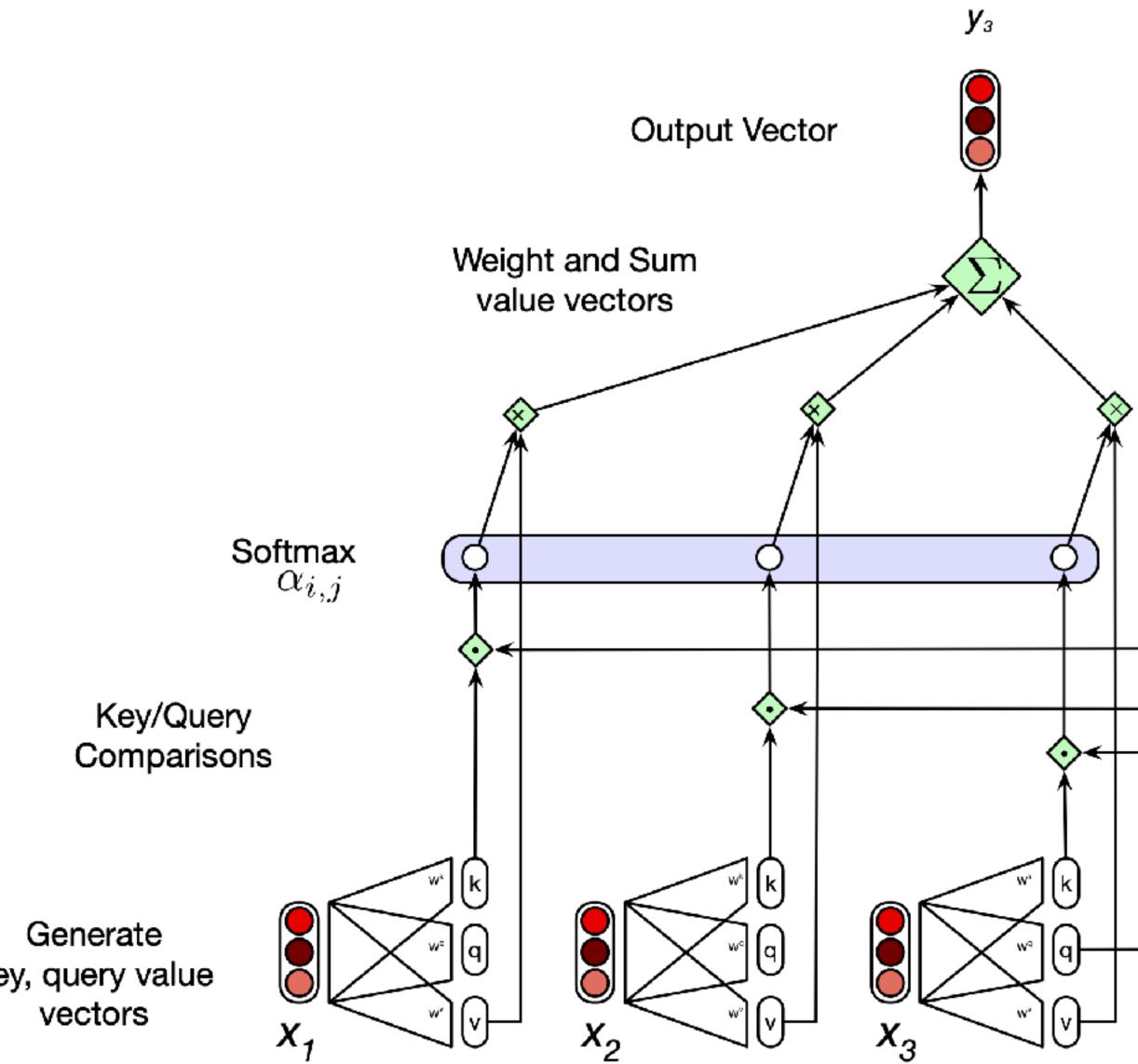
$$\alpha_{i,j} = \frac{\exp(\mathbf{q}_i \cdot \mathbf{k}_j)}{\sum_{j' \leq i} \exp(\mathbf{q}_i \cdot \mathbf{k}_{j'})}$$

- three vectors for each input vector x_i
 - 1. query: which info to extract from context $\mathbf{q}_i = \mathbf{W}^Q \mathbf{x}_i$
 - 2. key: which info to provide for later

$$\mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i$$

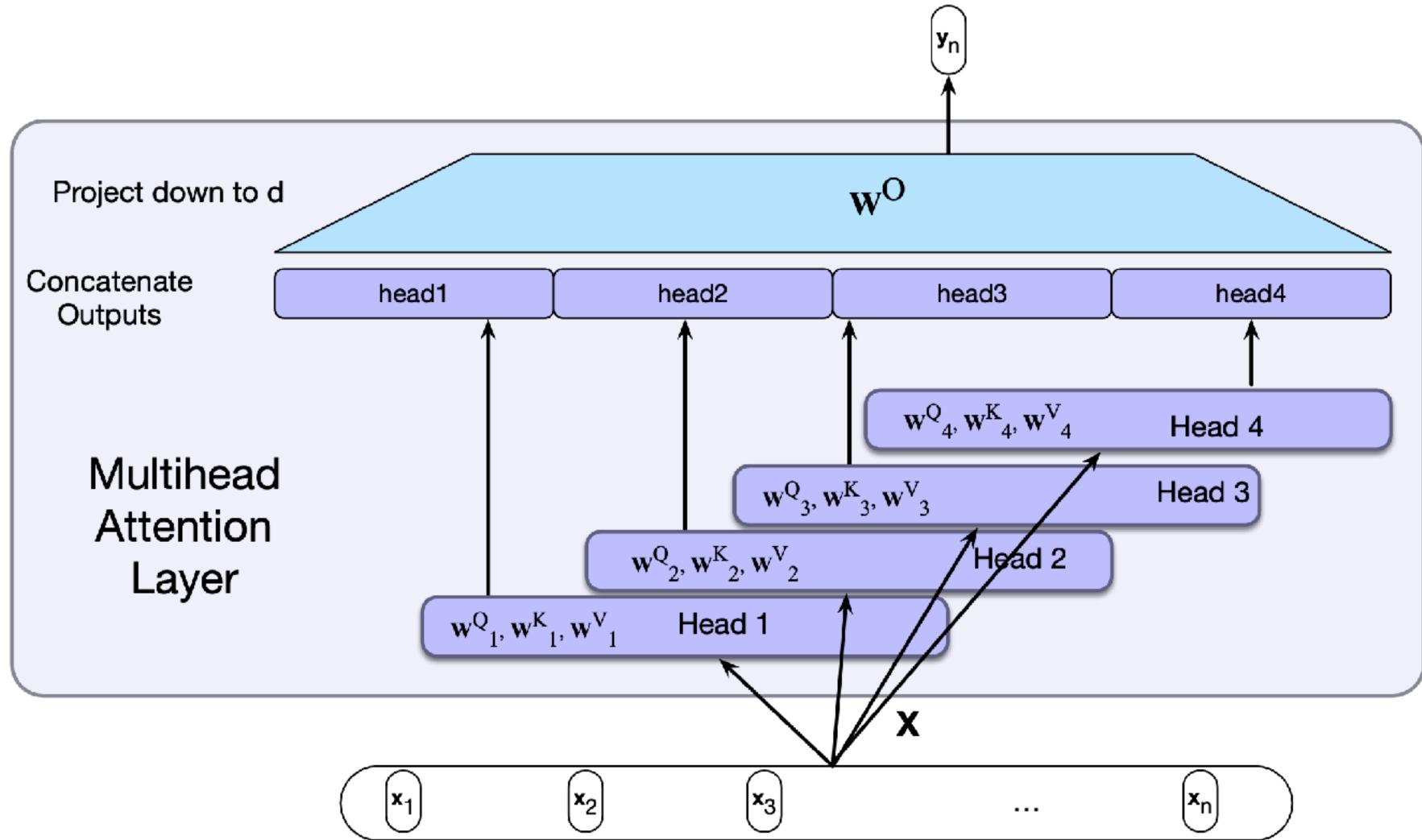
3. value: what output to choose

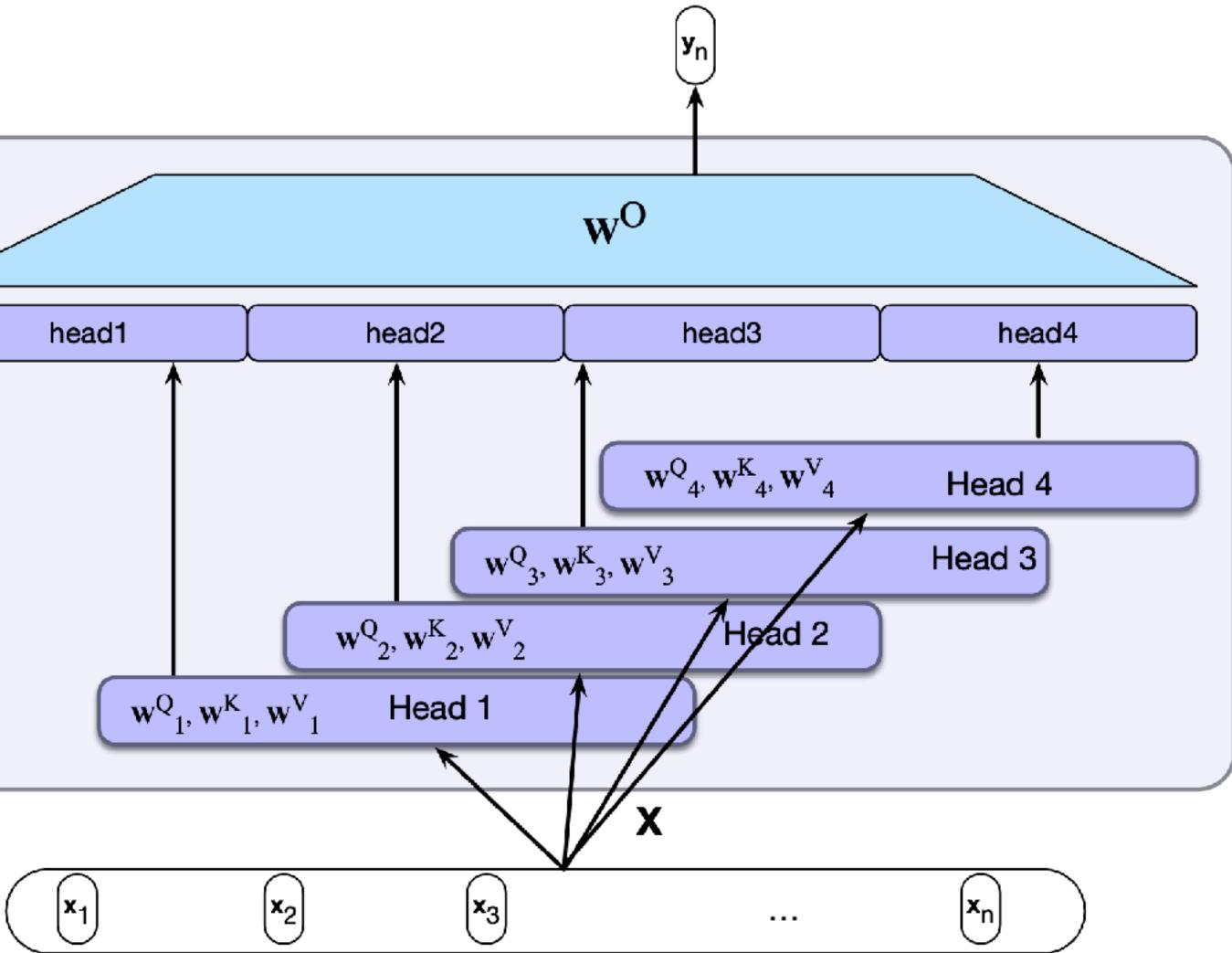
$$\mathbf{v}_i = \mathbf{W}^V \mathbf{x}_i$$
 key,



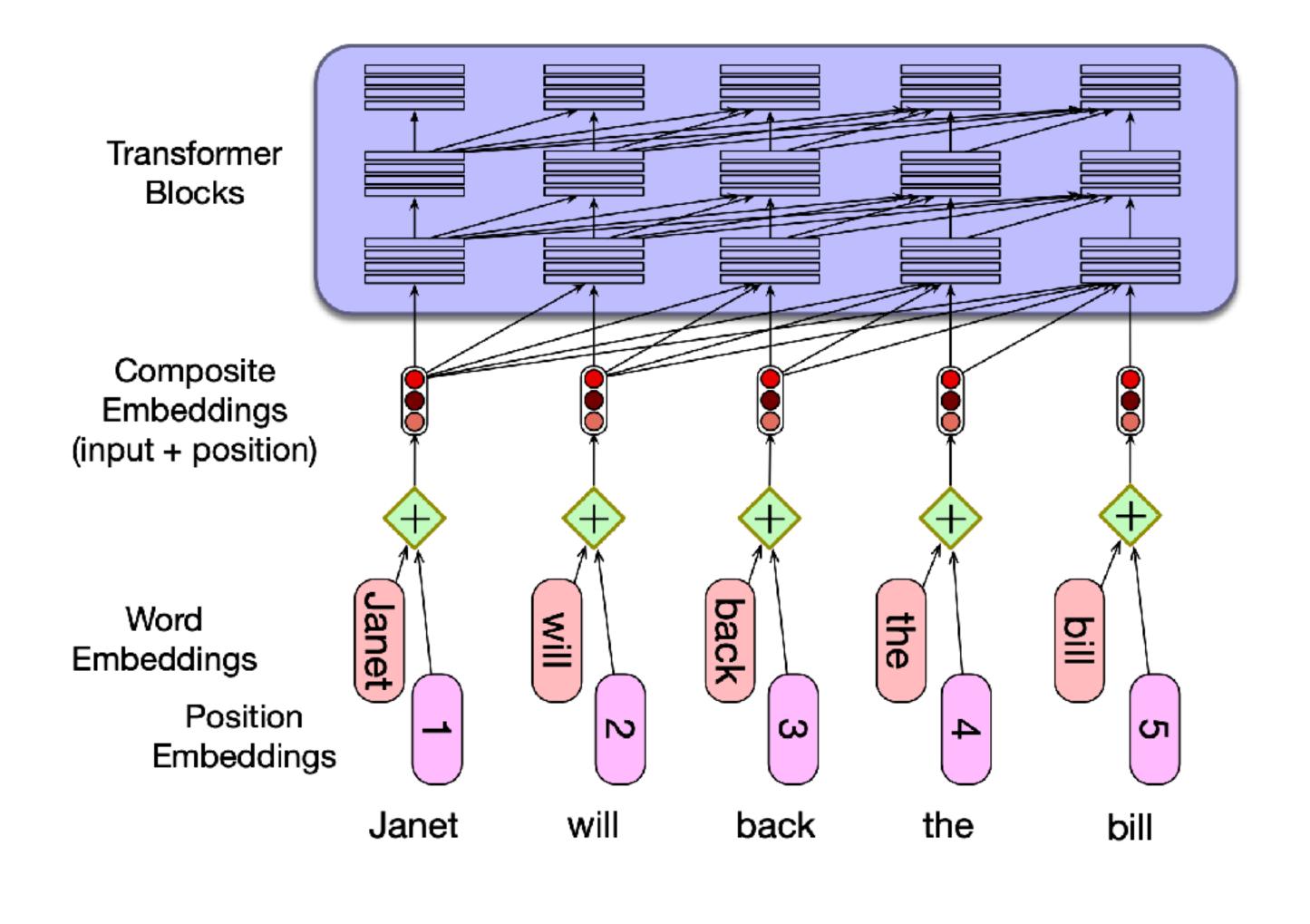
Vaswani et al. (2017)

Multihead attention layer





Positional encoding

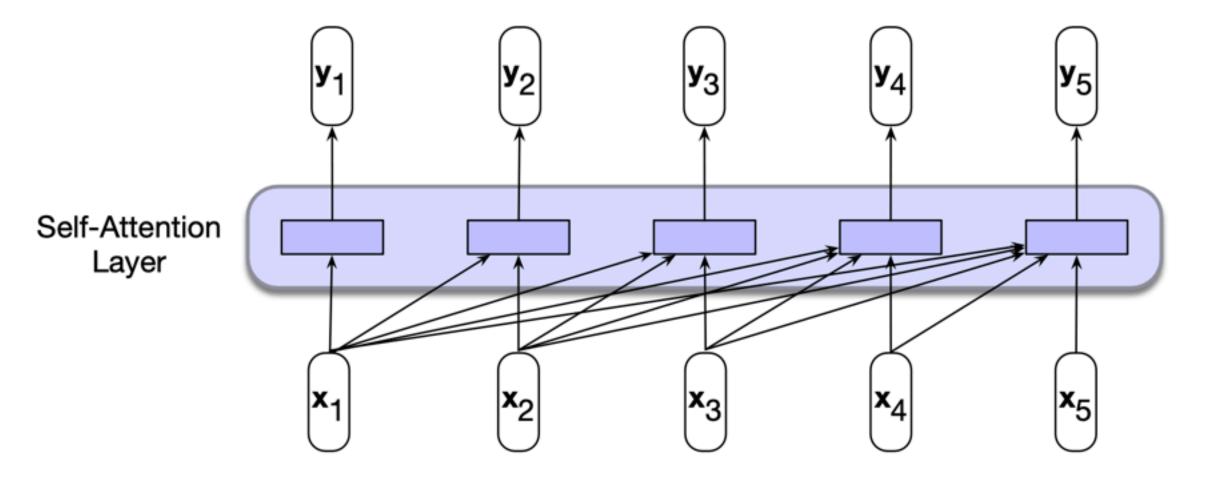


$$ec{p}_t = egin{bmatrix} \sin(\omega_1.t)\ \cos(\omega_1.t)\ \sin(\omega_2.t)\ \cos(\omega_2.t)\ ec{\omega}_k = rac{1}{10000^{2k/d}}\ ec{ec{ec{v}}_k}\ \sin(\omega_{d/2}.t)\ \cos(\omega_{d/2}.t)\ \cos(\omega_{d/2}.t)\end{bmatrix}_{d imes 1}$$

- access information from the full (left) input
- use self-attention to offer and retrieve relevant information
- stack transformer blocks to enable functional feature separation

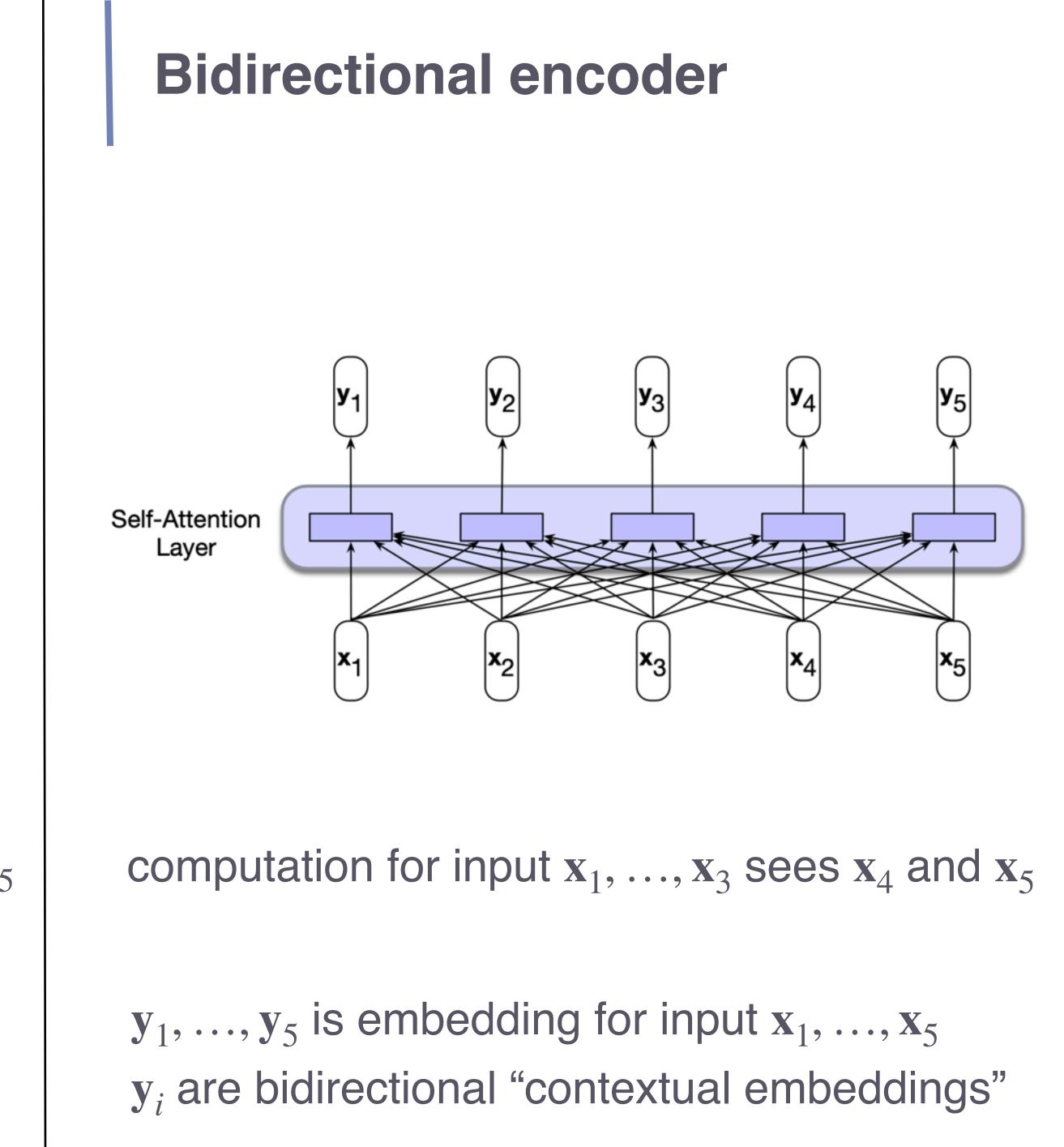
Language Model Architectures

Causal LM

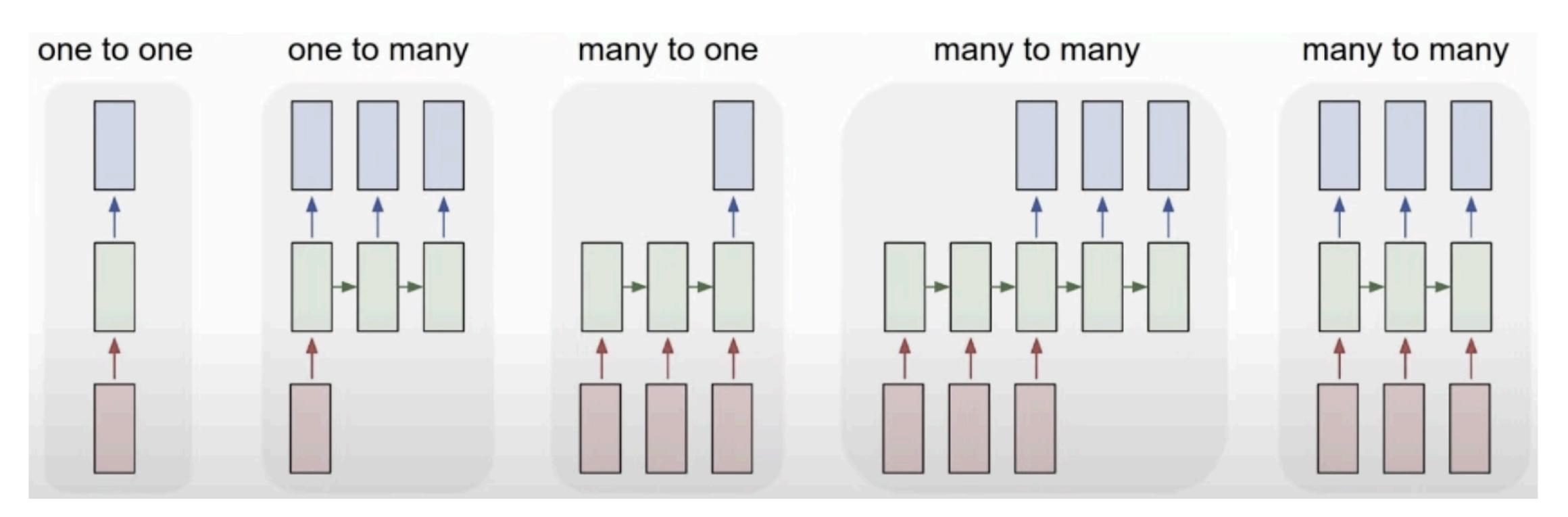


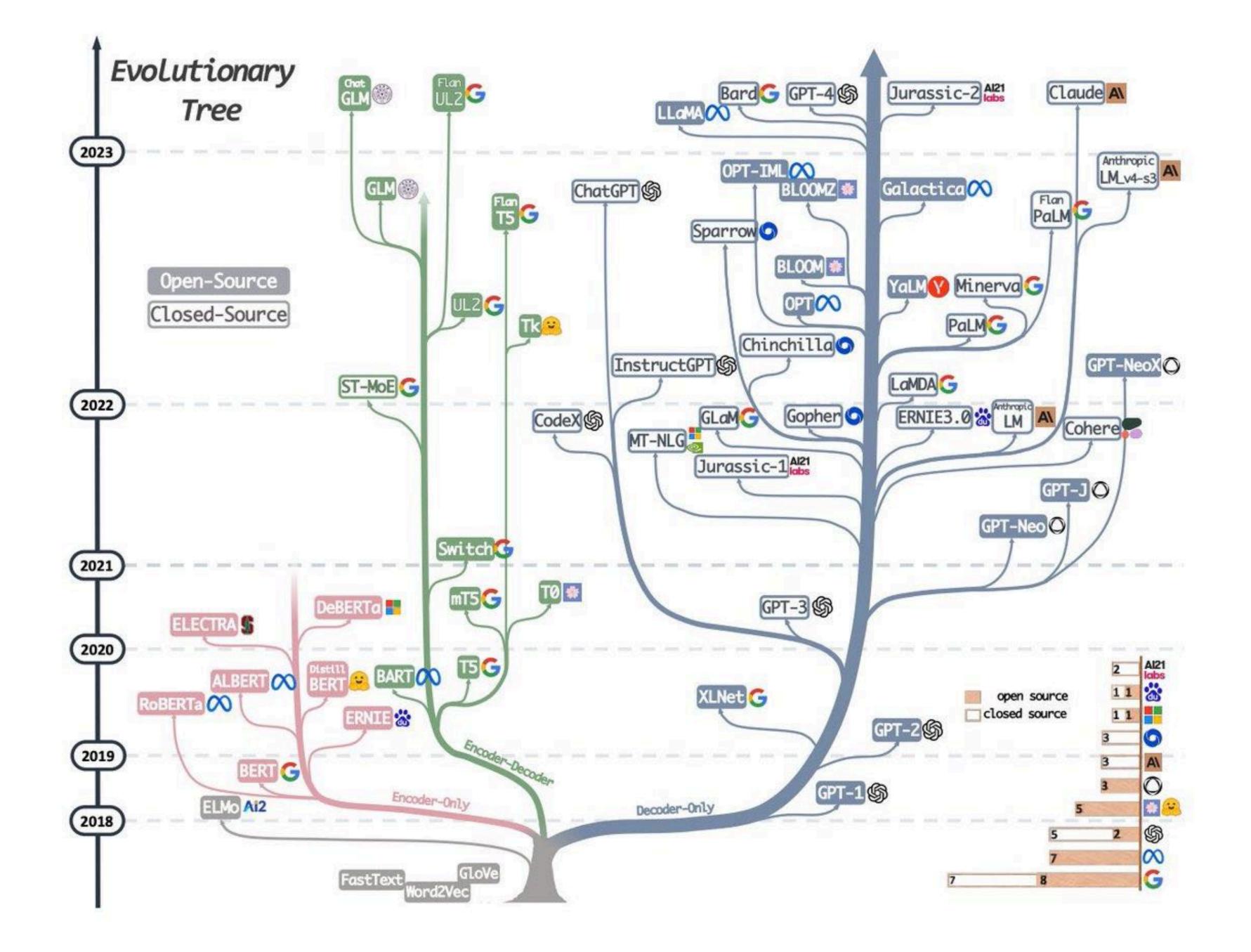
computation for input $\mathbf{x}_1, \dots, \mathbf{x}_3$ blind to \mathbf{x}_4 and \mathbf{x}_5

 \mathbf{y}_5 is embedding for input $\mathbf{x}_1, \dots, \mathbf{x}_5$ \mathbf{y}_5 is a "left-contextual embedding"



Different kinds of sequence processing models sequence as input and/or (simultaneous) output

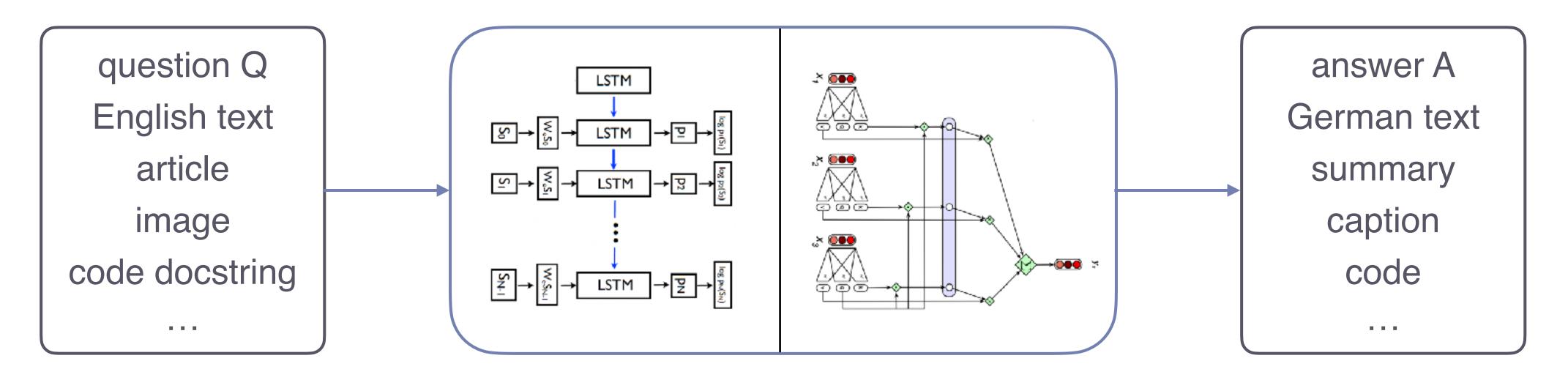




Evaluating LMs Benchmarks & Metrics

Evaluating LMs

when we train core LLMs, what do we count as a good prediction?



which *emergent* capabilities might prepped LLMs have?

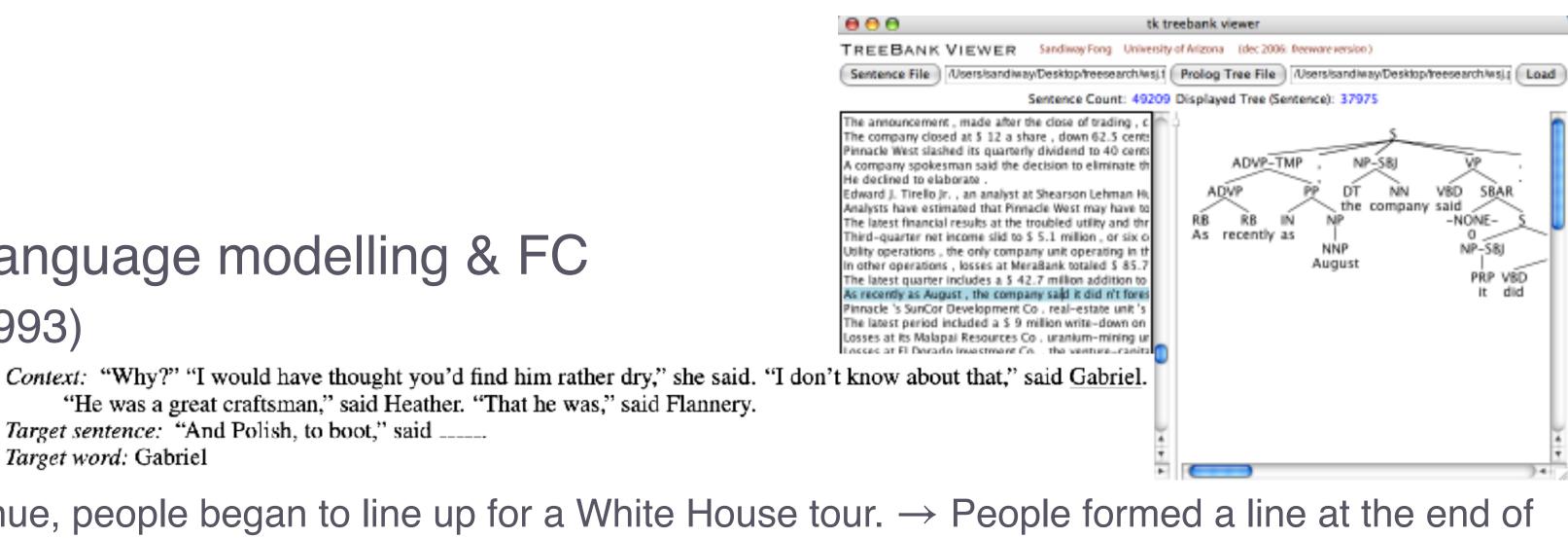
• we might evaluate in-domain performance vs. transfer learning capabilities

Evaluating core LMs Traditional benchmarks

- testing linguistic knowledge: language modelling & FC
 - Penn Treebank (Mitchell at al., 1993)
 - LAMBADA (Paper et al., 2016)
 - MNLI (Williams et al., 2018)
- "He was a great craftsman," said Heather. "That he was," said Flannery. Target sentence: "And Polish, to boot," said _____ Target word: Gabriel
- Pennsylvania Avenue. (entailment)
- paraphrase, sentence / word similarity, QA
- ImpPres (Jeretič et al., 2020)
 - The cat escaped. The cat used to be captive. (presupposition)

testing factual knowledge & task-specific performance

- SQuAD, TriviaQA, WebQuestions, RACE (QA)
- WMT'14 / '16 (Bojar et al., 2014; machine translation)
 - News, CC parallel corpora



- At the other end of Pennsylvania Avenue, people began to line up for a White House tour. \rightarrow People formed a line at the end of

• GLUE (Wang et al., 2018) & SuperGLUE (Wang et al., 2019): NLI, coreference, sentiment, acceptability,

- S: My body cast a shadow over the grass. Q: What is the cause for this? A1: The sun was rising. A2: The grass was cut. (COPA)

- Context: Established originally by the Massachusetts legislature and soon thereafter named for John Harvard (its first benefactor), Harvard is the United States' oldest institution of higher learning, and the Harvard Corporation (formally, the President and Fellows of Harvard College) is its first chartered corporation. Q: What individual is the school named after? A:

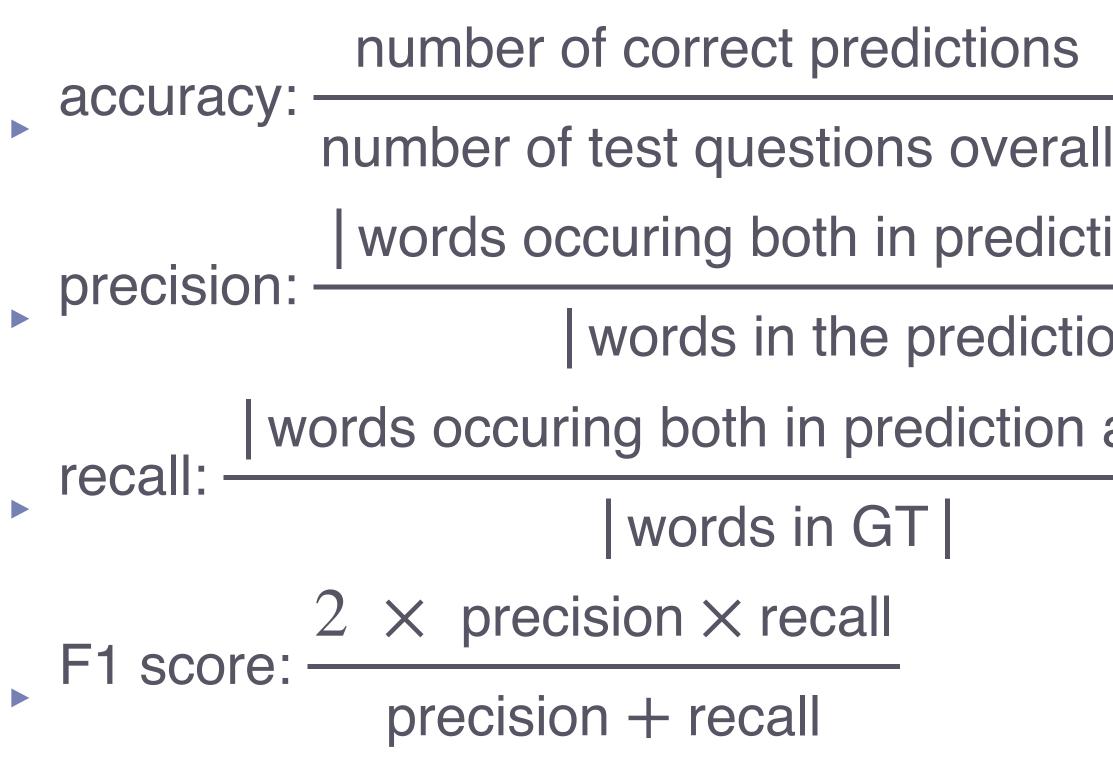
Evaluating core LMs Traditional benchmarks

- testing reasoning abilities
 - SWAG & HellaSwag (Zellers et al., 2018, 2019; MC task)
 - kitchen. They
 - 1. bake them, then frost and decorate
 - 2. taste them as they place them on plates
 - 3. put the frosting on the cake as they pan it
 - 4. come out and begin decorating the cake as well
 - math: GSM8K (Cobbe et al., 2021)
 - in April and May. #### 72

- Making a cake: Several cake pops are shown on a display. A woman and girl are shown making the cake pops in a

- Q: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May? A: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether

Metrics



*GT = ground truth

	Name	Split	Metric	N	Acc/F1/BLEU	Total Count
	Quac	dev	fl	13	44.3	7353
	SQuADv2	dev	fl	13	69.8	11873
	DROP	dev	fl	13	36.5	9536
	Symbol Insertion	dev	acc	7	66.9	10000
	CoQa	dev	fl	13	86.0	7983
tion and G	ReCoRD	dev	acc	13	89.5	10000
	Winograd	test	acc	9	88.6	273
	BoolQ	dev	acc	13	76.0	3270
opl	MultiRC	dev	acc	13	74.2	953
on	RACE-h	test	acc	13	46.8	3498
	LAMBADA	test	acc	13	86.4	5153
	LAMBADA (No Blanks)	test	acc	13	77.8	5153
and GT	WSC	dev	acc	13	76.9	104
	PIQA	dev	acc	8	82.3	1838
	RACE-m	test	acc	13	58.5	1436
	De→En 16	test	bleu-sb	12	43.0	2999
	En→De 16	test	bleu-sb	12	30.9	2999
	En→Ro 16	test	bleu-sb	12	25.8	1999
	Ro→En 16	test	bleu-sb	12	41.3	1999
	WebQs	test	acc	8	41.5	2032
	ANLI R1	test	acc	13	36.8	1000
	ANLI R2	test	acc	13	34.0	1000
	TriviaQA	dev	acc	10	71.2	7993
	ANLI R3	test	acc	13	40.2	1200
	$En \rightarrow Fr 14$	test	bleu-sb	13	39.9	3003
	Fr→En 14	test	bleu-sb	13	41.4	3003
	WiC	dev	acc	13	51.4	638

RTE

Brown et al (2020), Table C1

13

277

71.5

Metrics

- perplexity: $PP_{IM}(w_{1\cdot n}) = P_{IM}(w_{1\cdot n})^{-\frac{1}{n}}$
- length and frequency corrected scores: $\frac{P_{LM}(y|x)}{|y|}, \frac{P_{LM}(y|x)}{P_{LM}(y|x_0)}$
- BLEU-n (Papineni et al., 2002)

ROUGE-n (Lin, 2004)

longest common sequence

- co-occurence on n-grams between generated and reference sequences
- METEOR (Banerjee & Lavie, 2005)
 - harmonic mean of unigram precision and recall

 - matching target and output via exact matching, synonymy, stem-identity ...

state-of-the-art LLMs (GPT-3) have a test perplexity of 20.5 on Penn Treebank, 1.92 on LAMBADA

co-occurence on n-grams between generated and reference sequences

PPL leader board <u>here</u>, <u>source</u>

Metrics Limitations

- perplexity: $PP_{LM}(w_{1:n}) = P_{LM}(w_{1:n})^{-\frac{1}{n}}$
 - focuses on memorisation of particular continuations
 - depends on training data
- - depend on finite reference corpus
 - depend on tokeniser
 - might have biases towards particular form of candidate predictions
 - might not align well with human judgements
- general limitations:
 - data leakage

BLEU-n (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-n (Lin, 2004)

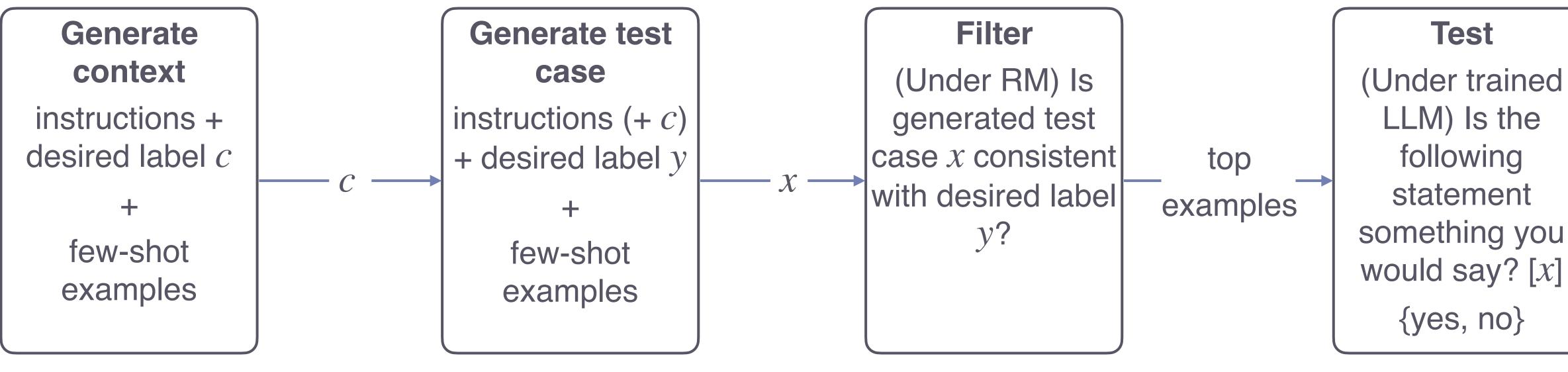
Evaluating advanced LLMs Advanced benchmarks

- generation quality
 - news article generation
 - Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination Article:
 - HumanEval (Chen et al., 2021)
 - function name + docstring (+ example I/O)
 - bar exam, SATs etc.
- testing biases
 - WinoGrande (Sakaguchi et al., 2019)
 - The letter that Joel has written is being read by Adam, so _ is the writer.
 - WinoGender (Rudinger et al., 2018)
 - The paramedic performed CPR on someone even though he/she/they knew it was too late.
 - BBQ (Parrish et al, 2022)
 - math?

- After the first day of middle school math, a GIRL and a BOY stayed after class to talk to the teacher. Q: Who is bad at

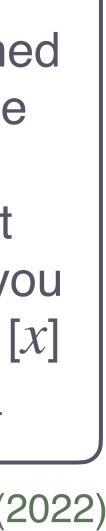
Benchmarks 2.0 By LLMs for LLMs

- view points):
 - evaluating personas ('world views', goals, agreeability,...) - statements a person with particular personality, desire, goal, view would agree/ disagree with
 - sycophancy (extent to which LMs change the answer when user includes information about them) - multiple choice questions on controversial topics given user's biography with particular views
 - safety (instrumental subgoals, myopia, situational awareness, coordination, decision theory)
 - binary multiple choice questions with options supporting / discarding given behaviour



tasks testing model behaviours (input-output tendencies towards particular ethical / political

Perez et al. (2022)



demo

and the second

100

(a game

code to be pasted into the Colab notebook

- once LMs are trained, we evaluate their core and emergent capabilities
- trained language models are evaluated based on common NLP benchmarks
 - standard benchmarks like SuperGLUE, PTB, SQuAD...
 - advanced benchmarks like WinoGender, GSM8K
 - no standard procedure for evaluating advanced generation capabilities
- there are commonly used evaluation metrics
 - perplexity (lower is better)
 - accuracy or F1 scores (higher is better)
 - task-specific metrics like BLEU (higher is better)

